Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6940313 | Pattern Recognition Letters | 2018 | 11 Pages |
Abstract
Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in this paper, which supports parallel computing in addition to multi-density clustering. It constructs grids using hyper-square cells and provides users with parameter k to control the balance between efficiency and accuracy to increase the flexibility of the algorithm. Compared with conventional density-based algorithms, it achieves much higher performance by eliminating distance calculations among points based on the newly proposed concept of ε-neighbor cells. Compared with conventional grid-based algorithms, it uses a set of symmetric (2k+1)D cells to identify dense cells and the density-connected relationships among cells. Therefore, the maximum calculated deviation of ε-neighbor points in the grid-based algorithm can be controlled to an acceptable level through parameter k. In our experiments, the results demonstrate that GRIDEN can achieve a reliable clustering result that is infinite closed with respect to the exact DBSCAN as parameter k grows, and it requires computational time that is only linear to N.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Deng Chao, Song Jinwei, Sun Ruizhi, Cai Saihua, Shi Yinxue,