Article ID Journal Published Year Pages File Type
6941163 Pattern Recognition Letters 2015 7 Pages PDF
Abstract
In this paper, a computationally competitive incremental algorithm based on QR factorization is proposed, to automatically determine the number of hidden nodes in generalized single-hidden-layer feedforward networks (SLFNs). This approach, QR factorization based Incremental Extreme Learning Machine (QRI-ELM), is able to add random hidden nodes to SLFNs one by one. The computational complexity of this approach is analyzed in this paper as well. Simulation results show and verify that our new approach is fast and effective with good generalization and accuracy performance.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,