Article ID Journal Published Year Pages File Type
6949056 ISPRS Journal of Photogrammetry and Remote Sensing 2018 16 Pages PDF
Abstract
Mobile Light Detection And Ranging (LiDAR) point clouds have the characteristics of complex and incomplete scenes, uneven point density and noises, which raises great challenges for automatically interpreting 3D scene. Aiming at the problem of 3D point cloud classification, we propose a probabilistic graphical model for automatic classification of mobile LiDAR point clouds in this paper. First, the super-voxels are generated as primitives based on the similar geometric and radiometric properties. Second, we construct point-based multi-scale visual features that are used to describe the texture information at various scales. Third, the topic model is used to analyze the semantic correlations among points within super-voxels to establish the semantic representation, which is finally fed into the proposed probabilistic graphical model. The proposed model combines Bayesian network and Markov random fields to obtain locally continuous and globally optimal classification results. To evaluate the effectiveness and the robustness of the proposed method, experiments were conducted using mobile LiDAR point clouds for three types of street scenes. Experimental results demonstrate that our proposed model is efficient and robust for extracting vehicles, buildings, street trees and pole-like objects, with overall accuracies of 98.17%, 97.41% and 96.81% respectively. Moreover, compared with other existing methods, our proposed model can provide higher classification correctness, specifically for small objects such as cars and pole-like objects.
Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, ,