Article ID Journal Published Year Pages File Type
6949516 ISPRS Journal of Photogrammetry and Remote Sensing 2015 15 Pages PDF
Abstract
This paper presents a likelihood ratio test based method of change detection and classification for synthetic aperture radar (SAR) time series, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA). This method involves three steps: (1) multi-temporal pre-denoising step over the whole image series to reduce the effect of the speckle noise; (2) likelihood ratio test based change criteria between two images using both the original noisy images and the denoised images; (3) change classification by a normalized cut based clustering-and-recognizing method on change criterion matrix (CCM). The experiments on both synthetic and real SAR image series show the effective performance of the proposed framework.
Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , , ,