Article ID Journal Published Year Pages File Type
6949622 ISPRS Journal of Photogrammetry and Remote Sensing 2014 10 Pages PDF
Abstract
The features used in the separation of different objects are important for successful point cloud classification. Eigen-features from a covariance matrix of a point set with the sample mean are commonly used geometric features that can describe the local geometric characteristics of a point cloud and indicate whether the local geometry is linear, planar, or spherical. However, eigen-features calculated by the principal component analysis of a covariance matrix are sensitive to LiDAR data with inherent noise and incomplete shapes because of the non-robust statistical analysis. To obtain reliable eigen-features from LiDAR data and to improve classification accuracy, we introduce a method of analyzing local geometric characteristics of a point cloud by using a weighted covariance matrix with a geometric median. Each point is assigned a weight to represent its spatial contribution in the weighted principal component analysis and to estimate the geometric median which can be regarded as a localized center of a shape. In the experiments, qualitative and quantitative analyses on airborne LiDAR data and simulated point clouds show a clear improvement of the proposed method compared with the standard eigen-features. The classification accuracy is improved by 1.6-4.5% using a supervised classifier.
Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , , ,