Article ID Journal Published Year Pages File Type
695059 Automatica 2016 8 Pages PDF
Abstract

The solution concepts proposed in this paper follow the Karush–Kuhn–Tucker (KKT) conditions for a Pareto optimal solution in finite-time, ergodic and controllable Markov chains multi-objective programming problems. In order to solve the problem we introduce the Tikhonov’s regularizator for ensuring the objective function is strict-convex. Then, we consider the cc-variable method for introducing equality constraints that guarantee the result belongs to the simplex and satisfies ergodicity constraints. Lastly, we restrict the cost-functions allowing points in the Pareto front to have a small distance from one another. The computed image points give a continuous approximation of the whole Pareto surface. The constraints imposed by the cc-variable method make the problem computationally tractable and, the restriction imposed by the small distance change ensures the continuation of the Pareto front. We transform the multi-objective nonlinear problem into an equivalent nonlinear programming problem by introducing the Lagrange function multipliers. As a result we obtain that the objective function is strict-convex, the inequality constraints are continuously differentiable and the equality constraint is an affine function. Under these settings, the KKT optimality necessary and sufficient conditions are elicited naturally. A numerical example is solved for providing the basic techniques to compute the Pareto optimal solutions by resorting to KKT conditions.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
,