Article ID Journal Published Year Pages File Type
6950729 Biomedical Signal Processing and Control 2018 11 Pages PDF
Abstract
Label free methods such as cell impedance assays are in vitro tests increasingly used in drug development and producing large and high-content data files. Since the current commercial software is not suited for fully automated analysis, there is a need to develop validated and rapid solutions to extract relevant information for biologists. This need is particularly obvious in the case of impedance signals analysis from cardiomyocytes. The proposed solution is based on three main steps. The first one consists in calculating five indices informing about the time variations of frequency (F), amplitude (A), shape (S) of beatings, trends (T) of the cardiomyocyte dependent on spreading, viability and attachment as well as irregularity (I) of the contractility. In a second phase, two summary statistics are proposed to test the concentration effect of drugs on the five FASTI indices. Results of the statistical tests are finally aggregated in a cardio-effect grade to compare the tested molecules in a cardio-impact scale graduated from 0 (no influence) to 10 (highly disturbed effects in cardiomyocytes). This innovative approach was tested using in vitro data obtained from cell impedance analysis of three known molecules (2 cardiotoxic and 1 non-cardiotoxic compounds). Results have clearly shown the ability of the proposed approach to identify significant effects on the contractility of cardiomyocytes. This solution speeds up the analysis of cardiomyocyte impedance data, takes into account all the kinetic data generated and is now available for biologists on a web-platform: i-Cardio™ developed by CYBERnano™.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,