Article ID Journal Published Year Pages File Type
695170 Automatica 2016 7 Pages PDF
Abstract

Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems including convergence to an attractor and entrainment to a periodic excitation. We consider three generalizations of contraction with respect to a norm that allow contraction to take place after small transients in time and/or amplitude. These generalized contractive systems (GCSs) are useful for several reasons. First, we show that there exist simple and checkable conditions guaranteeing that a system is a GCS, and demonstrate their usefulness using several models from systems biology. Second, allowing small transients does not destroy the important asymptotic properties of contractive systems like convergence to a unique equilibrium point, if it exists, and entrainment to a periodic excitation. Third, in some cases as we change the parameters in a contractive system it becomes a GCS just before it looses contractivity with respect to a norm. In this respect, generalized contractivity is the analogue of marginal stability in Lyapunov stability theory.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,