Article ID Journal Published Year Pages File Type
6951804 Digital Signal Processing 2018 9 Pages PDF
Abstract
Although the interval type-2 fuzzy c-means clustering algorithm (IT2FCM) can well represent the uncertainty in data, there remain some problems to be solved: how to initialize cluster centers and how to determine fuzzifiers. In order to solve these issues of IT2FCM for color image segmentation, a pareto-based interval type-2 fuzzy c-means with multi-scale just noticeable difference color histogram (PIT2FC-MJND) is proposed in this paper. A multi-scale just noticeable difference (JND) color histogram is firstly constructed by using many distance thresholds and utilized to provide initial cluster centers. Then, a modified type-reduction and de-fuzzification mechanism on this multi-scale JND color histogram is designed for updating membership functions and cluster centers. Moreover, a pareto-based strategy for determining the combination of fuzzifiers is presented by using a global fuzzy compactness function and a fuzzy separation function which are based on the constructed multi-scale JND color histogram. The experimental results on real, Berkeley and Weizmann Images confirm the validity of the proposed approach.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,