Article ID Journal Published Year Pages File Type
6951975 Digital Signal Processing 2016 8 Pages PDF
Abstract
This paper proposes a novel technique for texture image retrieval based on tetrolet transforms. Tetrolets provide fine texture information due to its different way of analysis. Tetrominoes are applied at each decomposition level of an image and best combination of tetrominoes is selected, which better shows the geometry of an image at each level. All three high pass components of the decomposed image at each level are used as input values for feature extraction. A feature vector is created by taking standard deviation in combination with energy at each subband. Retrieval performance in terms of accuracy is tested on group of texture images taken from benchmark databases: Brodatz and VisTex. Experimental results indicate that the proposed method achieves 78.80% retrieval accuracy on group of texture images D1 (taken from Brodatz), 84.41% on group D2 (taken from VisTex) and 77.41% on rotated texture image group D3 (rotated images from Brodatz).
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,