Article ID Journal Published Year Pages File Type
6952047 Digital Signal Processing 2015 11 Pages PDF
Abstract
Long duration recordings of ECG signals require high compression ratios, in particular when storing on portable devices. Most of the ECG compression methods in literature are based on wavelet transform while only few of them rely on sparsity promotion models. In this paper we propose a novel ECG signal compression framework based on sparse representation using a set of ECG segments as natural basis. This approach exploits the signal regularity, i.e. the repetition of common patterns, in order to achieve high compression ratio (CR). We apply k-LiMapS as fine-tuned sparsity solver algorithm guaranteeing the required signal reconstruction quality PRDN (Normalized Percentage Root-mean-square Difference). Extensive experiments have been conducted on all the 48 records of MIT-BIH Arrhythmia Database and on some 24 hour records from the Long-Term ST Database. Direct comparisons of our method with several state-of-the-art ECG compression methods (namely ARLE, Rajoub's, SPIHT, TRE) prove its effectiveness. Our method achieves average performances that are two-three times higher than those obtained by the other assessed methods. In particular the compression ratio gap between our method and the others increases with growing PRDN.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,