Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6952607 | Journal of the Franklin Institute | 2018 | 17 Pages |
Abstract
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, 'explosion of complexity' of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Luo Shaohua, Gao Ruizhen,