Article ID Journal Published Year Pages File Type
6952658 Journal of the Franklin Institute 2018 19 Pages PDF
Abstract
This paper deals with the problem of iterative learning control algorithm for a class of multi-agent systems with distributed parameter models. And the considered distributed parameter models are governed by the parabolic or hyperbolic partial differential equations. Based on the framework of network topologies, a consensus-based iterative learning control protocol is proposed by using the nearest neighbor knowledge. When the iterative learning control law is applied to the systems, the consensus errors between any two agents on L2 space are bounded, and furthermore, the consensus errors on L2 space can converge to zero as the iteration index tends to infinity in the absence of initial errors. Simulation examples illustrate the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,