Article ID Journal Published Year Pages File Type
6952685 Journal of the Franklin Institute 2018 38 Pages PDF
Abstract
In this paper, the identification of the Wiener-Hammerstein systems with unknown orders linear subsystems and backlash is investigated by using the modified multi-innovation stochastic gradient identification algorithm. In this scheme, in order to facilitate subsequent parameter identification, the orders of linear subsystems are firstly determined by using the determinant ratio approach. To address the multi-innovation length problem in the conventional multi-innovation least squares algorithm, the innovation updating is decomposed into sub-innovations updating through the usage of multi-step updating technique. In the identification procedure, by reframing two auxiliary models, the unknown internal variables are replaced by using the outputs of the corresponding auxiliary model. Furthermore, the convergence analysis of the proposed algorithm has shown that the parameter estimation error can converge to zero. Simulation examples are provided to validate the efficiency of the proposed algorithm.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,