Article ID Journal Published Year Pages File Type
6952691 Journal of the Franklin Institute 2018 18 Pages PDF
Abstract
This paper is concerned with the quantitative mean square exponential stability and stabilization for stochastic systems with Markovian switching. First, the concept of quantitative mean square exponential stability(QMSES) is introduced, and two stability criteria are derived. Then, based on an auxiliary definition of general finite-time mean square stability(GFTMSS), the relations among QMSES, GFTMSS and finite time stochastic stability (FTSS) are obtained. Subsequently, QMSE-stabilization is investigated and several new sufficient conditions for the existence of the state and observer-based controllers are provided by means of linear matrix inequalities. An algorithm is given to achieve the relation between the minimum states' upper bound and the states' decay velocity. Finally, a numerical example is utilized to show the merit of the proposed results.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,