Article ID Journal Published Year Pages File Type
6952790 Journal of the Franklin Institute 2018 23 Pages PDF
Abstract
In this study, an adaptive fractional order sliding mode controller with a neural estimator is proposed for a class of systems with nonlinear disturbances. Compared with traditional sliding mode controller, the new proposed fractional order sliding mode controller contains a fractional order term in the sliding surface. The fractional order sliding surface is used in adaptive laws which are derived in the framework of Lyapunov stability theory. The bound of the disturbances is estimated by a radial basis function neural network to relax the requirement of disturbance bound. To investigate the effectiveness of the proposed adaptive neural fractional order sliding mode controller, the methodology is applied to a Z-axis Micro-Electro-Mechanical System (MEMS) gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed control system can improve tracking performance as well as parameter identification performance.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,