Article ID Journal Published Year Pages File Type
6952825 Journal of the Franklin Institute 2018 14 Pages PDF
Abstract
This paper is concerned with the probability-constrained tracking control problem for a class of time-varying systems with stochastic nonlinearities, stochastic noises and successively packet loss. The main purpose of this paper is to design a time-varying observer and tracking controller such that (1) the probabilities of both the estimation error and tracking error confined to given ellipsoidal sets are larger than prescribed constants, and (2) the ellipsoids are minimized in the sense of matrix norm at each time point. By using a stochastic analysis method, the probability constrained tracking control problem is solved and sufficient conditions are obtained in terms of recursive linear matrix inequalities. A recursive optimization algorithm is developed to design the observer and tracking controller such that not only the addressed probability constrained aim is satisfied, but also the ellipsoidal sets are minimized. At last, a simulation example is given to illustrate the effectiveness and applicability of the developed approach.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,