Article ID Journal Published Year Pages File Type
6952874 Journal of the Franklin Institute 2018 41 Pages PDF
Abstract
The permeability index of the blast furnace is a significant symbol to measure the smooth operation of the blast furnace. This paper proposes a novel prediction model for permeability index of the blast furnace based on the multi-layer extreme learning machine (ML-ELM), the principal component analysis (PCA) method and wavelet transform (called as W-PCA-ML-ELM prediction model). This modified ML-ELM algorithm is based on the ML-ELM algorithm and the PCA method (named as PCA-ML-ELM). The PCA method is applied on the ML-ELM algorithm to improve the algebraic property of the last hidden layer output matrix which deteriorates its generalization performance due to the high multicollinearity. Because the production data of the blast furnace field contain noises, this paper applies the wavelet transform to remove the noise. Comparing with other prediction models which are based on the ML-ELM, the ELM, the BP and the SVM, simulation results illustrate that the better generalization performance and stability of the proposed W-PCA-ML-ELM prediction model.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,