Article ID Journal Published Year Pages File Type
6952963 Journal of the Franklin Institute 2018 29 Pages PDF
Abstract
In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,