Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6952969 | Journal of the Franklin Institute | 2018 | 18 Pages |
Abstract
A robust low-complexity design methodology is presented for global tracking of uncertain high-order nonlinear systems with unknown time-varying delays. In contrast to the existing literature, this paper assumes that nonlinear bounding functions of time-delay nonlinearities and high powers of virtual and actual control variables are unknown. Furthermore, a delay-independent tracking scheme using nonlinearly transformed error surfaces is simply designed without the knowledge of nonlinear bounding functions of model nonlinearities, the adaptive technique, and the calculation of repeated time derivatives of certain signals. Thus, the proposed tracker is implemented with low complexity. It is recursively shown that the tracking error is preserved within the predefined bounds of transient and steady-state performance in the Lyapunov sense.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Sung Jin Yoo,