Article ID Journal Published Year Pages File Type
6953008 Journal of the Franklin Institute 2018 25 Pages PDF
Abstract
This paper presents a minimal-neural-networks-based design approach for the decentralized output-feedback tracking of uncertain interconnected strict-feedback nonlinear systems with unknown time-varying delayed interactions unmatched in control inputs. Compared with existing approximation-based decentralized output-feedback designs using multiple neural networks for each subsystem in lower triangular form, the main contribution of this paper is to provide a new recursive backstepping strategy for a local memoryless output-feedback controller design using only one neural network for each subsystem regardless of the order of subsystems, unmeasurable states, and unknown unmatched and delayed nonlinear interactions. In the proposed strategy, error surfaces are designed using unmeasurable states instead of measurable states and virtual controllers are regarded as intermediate signals for designing a local control law at the last step. Using Lyapunov stability theorem and the performance function technique, it is shown that all signals of the total controlled closed-loop system are bounded and the transient and steady-state performance bounds of local tracking errors can be preselected by adjusting design parameters independent of delayed interactions.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,