Article ID Journal Published Year Pages File Type
6953671 Mechanical Systems and Signal Processing 2018 11 Pages PDF
Abstract
To decrease the movement uncertainty of industrial robots, a parameter identification method based on the Denavit-Hartenberg (DH) model is presented in this paper, where the redundant parameters are particularly addressed in the identifier procedure. In order to be consistent with the kinematic model used in robot controllers, we use DH method to establish the kinematic model instead of the modified DH (MDH) method that was used in most identification schemes. The kinematic model of a 6 degree of freedom (DOF) industrial robot is first developed, which is linearized to obtain the parameter identification coefficient matrix. Further analysis shows that this matrix is not with full rank, which means some parameters in this matrix are linearly dependant. This fact makes the direct identification of unknown parameters in this matrix unfeasible. To solve this problem, singular value decomposition (SVD) is used to determine the redundant parameters, which are then removed from the matrix. Then, an alternative identification algorithm with a modified least-square scheme is suggested to estimate the structural parameters of the robot. For this purpose, an identification calculation scheme is designed to minimize the residual movement uncertainties. Experimental studies based on a 6 DOF industrial robot show that the proposed identification method, which detects and removes the redundant parameters, can greatly reduce the residual movement uncertainties and calculation costs. Thus, this newly proposed method can improve the movement accuracy of the industrial robot significantly.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,