Article ID Journal Published Year Pages File Type
6954048 Mechanical Systems and Signal Processing 2018 16 Pages PDF
Abstract
Considering the strong nonlinear dynamic characteristics of dam deformation, the prediction model of dam deformation is investigated. Support vector machine (SVM) is combined with other methods, such as phase space reconstruction, wavelet analysis and particle swarm optimization (PSO), to build the prediction model of dam deformation. Firstly, the chaotic characteristics and the predictable time scale of dam deformation are identified by implementing the phase space reconstruction of observation data series on dam deformation. Secondly, a SVM-based prediction model of dam deformation is proposed. The reconstructed phase space of observed deformation and the Morlet wavelet basis function are selected as the input vector and the kernel function of SVM. Thirdly, the PSO algorithm is improved to implement the parameter optimization of SVM-based prediction model of dam deformation. Finally, the displacement of one actual dam is taken as an example. The results demonstrate the modeling efficiency and forecasting accuracy can be improved.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,