Article ID Journal Published Year Pages File Type
6955428 Mechanical Systems and Signal Processing 2016 11 Pages PDF
Abstract
This work deals with the structural and dynamic analysis of a building-like structure consisting of a three-story building with one active vibration absorber. The base of the structure is perturbed using an electromagnetic shaker, which provides forces with a wide range of excitation frequencies, including some resonance frequencies of the structure. One beam-column of the structure is coupled with a PZT stack actuator to reduce the vibrations. The overall mechanical structure is modeled using Euler-Lagrange methodology and validated using experimental modal analysis and Fine Element Method (FEM) techniques. The active control laws are synthesized to actively attenuate the vibration system response via the PZT stack actuator, caused by excitation forces acting on the base of the structure. The control scheme is obtained using Positive Acceleration Feedback (PAF) and Multiple Positive Acceleration Feedback (MPAF) to improve the closed-loop system response. Some experimental results are included to illustrate the overall system performance.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,