Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6958589 | Signal Processing | 2016 | 13 Pages |
Abstract
This paper describes an exponential transient excision algorithm (ETEA). In biomedical time series analysis, e.g., in vivo neural recording and electrocorticography (ECoG), some measurement artifacts take the form of piecewise exponential transients. The proposed method is formulated as an unconstrained convex optimization problem, regularized by smoothed â1-norm penalty function, which can be solved by majorization-minimization (MM) method. With a slight modification of the regularizer, ETEA can also suppress more irregular piecewise smooth artifacts, especially, ocular artifacts (OA) in electroencephalography (EEG) data. Examples of synthetic signal, EEG data, and ECoG data are presented to illustrate the proposed algorithms.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Yin Ding, Ivan W. Selesnick,