Article ID Journal Published Year Pages File Type
695935 Automatica 2014 5 Pages PDF
Abstract

We note that in the literature it is often taken for granted that for fractional-order system without delays, whenever the system trajectory reaches the equilibrium, it will stay there. In fact, this is the well-known phenomenon of finite-time stability. However, in this paper, we will prove that for fractional-order nonlinear system described by Caputo’s or Riemann–Liouville’s definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists. In addition, some examples of stability analysis are revisited and linear Lyapunov function is used to prove the asymptotic stability of positive fractional-order nonlinear systems.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,