Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6960388 | Signal Processing | 2014 | 10 Pages |
Abstract
This paper presents a global Gaussian mixture (GM) reduction algorithm via clustering for extended target tracking in clutter. The proposed global clustering algorithm is obtained by combining a fuzzy Adaptive Resonance Theory (ART) neural network architecture with the weighted Kullback-Leibler (KL) difference which describes discrimination of one component from another. Therefore, we call the proposed algorithm as ART-KL clustering (ART-KL-C) in the paper. The weighted KL difference is used as a category choice function of ART-KL-C, derived by considering both the KL divergence between two components and their weights. The performance of ART-KL-C is evaluated by the normalized integrated squared distance (NISD) measure, which describes the deviation between the original and reduced GM. The proposed algorithm is tested on both one-dimensional and four-dimensional simulation examples, and the results show that the proposed algorithm can more accurately approximate the original mixture and is useful in extended target tracking.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Yongquan Zhang, Hongbing Ji,