Article ID Journal Published Year Pages File Type
6961409 Advances in Engineering Software 2018 14 Pages PDF
Abstract
This paper proposes an effective method for the design of 3D micro-structured materials to attain extreme mechanical properties, which integrates the firstly developed 3D energy-based homogenization method (EBHM) with the parametric level set method (PLSM). In the 3D EBHM, a reasonable classification of nodes in periodic material microstructures is introduced to develop the 3D periodic boundary formulation consisting of 3D periodic boundary conditions, 3D boundary constraint equations and the reduced linearly elastic equilibrium equation. Then, the effective elasticity properties of material microstructures are evaluated by the average stress and strain theorems rather than the asymptotic theory. Meanwhile, the PLSM is applied to optimize microstructural shape and topology because of its positive characteristics, like the perfect demonstration of geometrical features and high optimization efficiency. Numerical examples are provided to demonstrate the advantages of the proposed design method. Results indicate that the optimized 3D material microstructures with expected effective properties are featured with smooth structural boundaries and clear interfaces.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , ,