Article ID Journal Published Year Pages File Type
6962530 Environmental Modelling & Software 2016 24 Pages PDF
Abstract
A Monte Carlo-based calibration and uncertainty assessment was performed for heat, water and carbon (C) fluxes, simulated by a soil-plant-atmosphere system model (CoupModel), in mown grassland. Impact of different multi-objective and multi-criteria constraints was investigated on model performance and parameter behaviour. Good agreements between hourly modelled and measurement data were obtained for latent and sensible heat fluxes (R2 = 0.61, ME = 0.48 MJ m−2 day−1), soil water contents (R2 = 0.68, ME = 0.34%) and carbon-dioxide flux (R2 = 0.60, ME = −0.18 g C m−2 day−1). Multi-objective and multi-criteria constraints were efficient in parameter conditioning, reducing simulation uncertainty and identifying critical parameters. Enforcing multi-constraints separately on heat, water and C processes resulted in the highest model improvement for that specific process, including some improvement too for other processes. Imposing multi-constraints on all groups of variables, associated with heat, water and C fluxes together, resulted in general effective parameters conditioning and model improvement.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , ,