Article ID Journal Published Year Pages File Type
6963172 Environmental Modelling & Software 2015 13 Pages PDF
Abstract
Evolutionary algorithms (EAs) have been widely used in handling various water resource optimization problems in recent years. However, it is still challenging for EAs to identify near-optimal solutions for realistic problems within the available computational budgets. This paper introduces a novel multi-objective optimization method to improve the efficiency of a typically difficult water resource problem: water distribution network (WDN) design. In the proposed approach, a WDN is decomposed into different sub-networks using decomposition techniques. EAs optimize these sub-networks individually, generating Pareto fronts for each sub-network with great efficiency. A propagation method is proposed to evolve Pareto fronts of the sub-networks towards the Pareto front for the full network while eliminating the need to hydraulically simulate the intact network itself. Results from two complex realistic WDNs show that the proposed approach is able to find better fronts than conventional full-search algorithms (optimize the entire network without decomposition) with dramatically improved efficiency.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , ,