Article ID Journal Published Year Pages File Type
699232 Control Engineering Practice 2016 10 Pages PDF
Abstract

•A nonlinear Internal Model Control (IMC) design is proposed.•The algorithm is applied to the boost control of a turbocharged gasoline engine.•The proposed nonlinear IMC is more implementable and less computationally extensive.•Its performance matches that of a well-tuned PI with feedforward and antiwindup.

Internal Model Control (IMC) has a great appeal for automotive powertrain control in reducing the control design and calibration effort. Motivated by its success in several automotive applications, this work investigates the design of nonlinear IMC for wastegate control of a turbocharged gasoline engine. The IMC design for linear time-invariant (LTI) systems is extended to nonlinear systems. To leverage the available tools for LTI IMC design, the quasi-linear parameter-varying (quasi-LPV) models are explored. IMC design through transfer function inverse of the quasi-LPV model is ruled out due to parameter variability. A new approach for nonlinear inversion, referred to as the structured quasi-LPV model inverse, is developed and validated. A fourth-order nonlinear model which sufficiently describes the dynamic behavior of the turbocharged engine is used as the design model in the IMC structure. The controller based on structured quasi-LPV model inverse is designed to achieve boost-pressure tracking. Finally, simulations on a validated high-fidelity model are carried out to show the feasibility of the proposed IMC. Its closed-loop performances are compared with a well-tuned PI controller with extensive feedforward and anti-windup built in. Robustness of the nonlinear IMC design is analyzed using simulations.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,