Article ID Journal Published Year Pages File Type
699352 Control Engineering Practice 2008 13 Pages PDF
Abstract

Engine torque estimation has important applications in the automotive industry: for example, automatically setting gears, optimizing engine performance, reducing emissions and designing drivelines.A methodology is described for the on line calculation of torque values from the gear, the accelerator pedal position and the engine rotational speed. It is based on the availability of input-torque experimental signals that are pre-processed (resampled, filtered and segmented) and then learned by a statistical machine learning method.Four methods, spanning the main learning principles, are reviewed in a unified framework and compared using the torque estimation problem: linear least squares, linear and non-linear neural networks and support vector machines. It is found that a non-linear model structure is necessary for accurate torque estimation. The most efficient torque model built is a non-linear neural network that achieves about 2% test normalized mean square error in nominal conditions.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,