Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
699389 | Control Engineering Practice | 2013 | 9 Pages |
The paper presents a fast nonlinear model predictive control (MPC) scheme for a magnetic levitation system. A nonlinear dynamical model of the levitation system is derived that additionally captures the inductor current dynamics of the electromagnet in order to achieve a high MPC performance both for stabilization and fast setpoint changes of the levitating mass. The optimization algorithm underlying the MPC scheme accounts for control constraints and allows for a time and memory efficient computation of the single iteration. The overall control performance of the levitation system as well as the low computational costs of the MPC scheme is shown both in simulations and experiments with a sampling frequency of 700 Hz on a standard dSPACE hardware.