Article ID Journal Published Year Pages File Type
699850 Control Engineering Practice 2015 11 Pages PDF
Abstract

The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of interacting machines that transport containers between the quayside area and the stacking area in an automated container terminal. The behaviors of the interacting machines are modeled as a combination of discrete-event dynamics and continuous-time dynamics. An event-driven receding horizon controller (RHC) is proposed for achieving energy efficient container handling. The underlying control problems are hereby formulated as a collection of small optimization problems that are solved in a receding horizon way. Simulation studies illustrate that energy consumption of container handling can indeed be reduced by the proposed methodology. Moreover, an assessment is made of performance of the proposed RHC controller under different types of uncertainties.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,