Article ID Journal Published Year Pages File Type
699969 Control Engineering Practice 2010 13 Pages PDF
Abstract

A large class of monitoring problems can be cast as the detection of a change in the parameters of a static or dynamic system, based on the effects of these changes on one or more observed variables. In this paper, the use of random forest models to detect change points in dynamic systems is considered. The approach is based on the embedding of multivariate time series data associated with normal process conditions, followed by the extraction of features from the resulting lagged trajectory matrix. The features are extracted by recasting the data into a binary classification problem, which can be solved with a random forest model. A proximity matrix can be calculated from the model and from this matrix features can be extracted that represent the trajectory of the system in phase space. The results of the study suggest that the random forest approach may afford distinct advantages over a previously proposed linear equivalent, particularly when complex nonlinear systems need to be monitored.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,