Article ID Journal Published Year Pages File Type
700103 Control Engineering Practice 2014 9 Pages PDF
Abstract

This paper presents control system design of a multi degrees-of-freedom (DOF) spherical wheel motor (SWM) in a class of ball-joint-like direct drive actuators to control orientation of the shaft. Three controllers (model based open-loop (OL), two closed-loop (CL) controllers) based on a push-pull torque model have been developed from rotor dynamics and magnetic field model referred to here as Distributed Multipole (DMP) model which provides accurate torque computation. The model based OL controller along with three control input shapes has been examined for the inclination control. Their results offer physical intuition, practical effectiveness, and also demonstrate the accuracy of magnetic field and torque computation. Then, two feedback controllers, a PD controller with and without the observer, have been developed for regulating its rotor inclination and experimentally evaluated against the OL controller. Finally, the performance on each controller has been compared to show the effect of the controllers on transient response. The experimental results verify control system design and demonstrate the motion capability of the SWM. While the experimental results illustrate the ability to control, they also reveal constraints and limitations of the controllers and provide insights for future design of control systems for the SWM.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,