Article ID Journal Published Year Pages File Type
700161 Control Engineering Practice 2008 10 Pages PDF
Abstract

This paper proposes an adaptive controller to guide an unicycle-like mobile robot during trajectory tracking. Initially, the desired values of the linear and angular velocities are generated, considering only the kinematic model of the robot. Next, such values are processed to compensate for the robot dynamics, thus generating the commands of linear and angular velocities delivered to the robot actuators. The parameters characterizing the robot dynamics are updated on-line, thus providing smaller errors and better performance in applications in which these parameters can vary, such as load transportation. The stability of the whole system is analyzed using Lyapunov theory, and the control errors are proved to be ultimately bounded. Simulation and experimental results are also presented, which demonstrate the good performance of the proposed controller for trajectory tracking under different load conditions.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,