Article ID Journal Published Year Pages File Type
700437 Control Engineering Practice 2010 14 Pages PDF
Abstract

End-of-line tuning is a crucial step for any mass-produced system endowed with automatic controllers. As a matter of fact, due to components tolerances and spreads in the production line, the controller tuning performed on a prototype system is never optimal on the final product. In many industrial applications, though, the end-of-line tuning is performed by human testers, and this does not always guarantee an objective assessment of the closed-loop system quality. This paper proposes a systematic way to design an automatic tuning procedure for a motion-inverter controller in agricultural tractors, which allows to significantly reduce the costs of end-of-line tuning and to obtain a homogeneous manoeuvre quality in all vehicles. The proposed automatic tuning system adapts the controller parameters governing the open-loop phase of the manoeuvre until a predefined manoeuvre quality is achieved. The parameters adaptation phase is guided by an on-line objective assessment of the manoeuvre quality from measured data, which allows to automatically classify the performed manoeuvre with respect to its quality attributes. The effectiveness of the proposed approach is assessed on a prototype vehicle.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,