Article ID Journal Published Year Pages File Type
700480 Control Engineering Practice 2010 9 Pages PDF
Abstract

In this paper, a multivariate fault prognosis approach for continuous processes with hidden faults is proposed based on statistical process monitoring methods and multivariate time series prediction. It is assumed that the fault is a slowly time-varying autocorrelated process and can be completely reconstructed. Fault magnitude is estimated first via reconstruction, then predicted by a vector AR model with wavelet based denoising. Given the fault direction, a new index is proposed to detect the fault, which integrates fault detection and prognosis together. Case studies on a continuous stirred tank reactor and the Tennessee Eastman process demonstrate the effectiveness of the proposed approaches.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,