Article ID Journal Published Year Pages File Type
700942 Diamond and Related Materials 2010 5 Pages PDF
Abstract

A stable superhydrophobic surface with low contact angle hysteresis using microscale carbon fabrics decorated with submicroscale silica (SiO2) spheres and carbon nanotubes (CNTs) is created. Without any surface treatment, superhydrophobicity is achieved, and a microsized water drop can be suspended on the three-tier roughened surface, leaving an air film underneath the droplet. A modified Cassie–Baxter model analyzes that the combined effect of SiO2 spheres and CNTs contributes a high area fraction of a water droplet in contact with air, leading to superhydrophobicity. Such a three-tier surface texture has robust superhydrophobic properties.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,