Article ID Journal Published Year Pages File Type
700975 Diamond and Related Materials 2009 6 Pages PDF
Abstract

Cubic boron nitride (cBN) thin films were deposited on diamond-coated tungsten carbide (WC) cutting inserts using electron cyclotron resonance (ECR) microwave plasma chemical vapor deposition (MPCVD). The effects of gas flow rate and substrate bias on the phase composition and structure of the BN films deposited on diamond surfaces were studied. It was revealed that both the cubic phase formation and the selective etching of hexagonal phase were controlled by modulating the hydrogen and boron trifluoride flow rate ratio. By the trial and error method the gas flow rate ratio and substrate bias voltage were optimized. Moreover the phase composition of the BN film was found to be affected by the thickness of diamond buffer layer and interrelated to the effective substrate bias. The hardness of the resulting cBN films reached the value of 70 GPa. In the synthesized coatings, the diamond beneath renders the best mechanical supporting capacity while the top cBN provides the superior chemical resistance and extreme hardness. The cBN/diamond bilayers deposited on WC inserts may serve as universal tool coatings for machining steels and other ferrous metals.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,