Article ID Journal Published Year Pages File Type
701264 Diamond and Related Materials 2007 7 Pages PDF
Abstract

The morphology, composition, and bonding character (carbon hybridization state) of continuous, ultra-thin (thickness ∼ 60 nm) nanocrystalline diamond (NCD) membranes are reported. NCD films were deposited on a silicon substrate that was pretreated using an optimized, two-step seeding process. The surface after each of the two steps, the as-grown NCD topside and the NCD underside (revealed by etching away the silicon substrate) is examined by X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) combined with X-ray absorption near edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The first step in the seeding process, a short exposure to a hydrocarbon plasma, induces the formation of SiC at the diamond/Si interface along with a thin, uniform layer of hydrogenated, amorphous carbon on top. This amorphous carbon layer allows for a uniform, dense layer of nanodiamond seed particles to be spread over the substrate in the second step. This facilitates the growth of a homogeneous, continuous, smooth, and highly sp3-bonded NCD film. We show for the first time that the underside of this film possesses atomic-scale smoothness (RMS roughness: 0.3 nm) and > 98% diamond content, demonstrating the effectiveness of the two-step seeding method for diamond film nucleation.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , , , ,