Article ID Journal Published Year Pages File Type
701853 Diamond and Related Materials 2015 10 Pages PDF
Abstract

•Cubic boron nitride films were grown via PECVD employing fluorine chemistry.•The bias-defined limits of c-BN growth were determined by in situ XPS.•As-deposited c-BN surfaces exhibited negative electron affinity (NEA) character.•The observed NEA character was related to the N–H surface bonding.

Cubic boron nitride (c-BN) was deposited on silicon substrates using electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) employing Ar–He–N2–H2–BF3 gas precursors at 780 °C. In situ X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM) measurements indicated that c-BN nucleated and grew on a hexagonal boron nitride (h-BN) layer that initially formed on the substrate. The minimum and maximum bias applied to the sample that yielded c-BN growth was investigated by in situ XPS. Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), and XPS were employed to determine the chemical composition of the produced films, while XPS and in situ ultraviolet photoelectron spectroscopy (UPS) were employed to investigate the electronic structure of film surfaces. The bandgap of the c-BN films was estimated to be 6.2 ± 0.2 eV from XPS measurements. In situ UPS measurements indicated that as-deposited c-BN films exhibited a negative electron affinity (NEA). The surface continued to exhibit an NEA after H2 plasma treatment performed at 650 °C and annealing at 780 °C. Analysis of surface bonding using a surface dipole model suggests that H-terminated N surface sites could be responsible for the observed NEA character.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,