Article ID Journal Published Year Pages File Type
702186 Diamond and Related Materials 2008 6 Pages PDF
Abstract

Successful modification of stress and conductivity for tetrahedral amorphous carbon (ta-C) films is realized by phosphorus incorporation via filtered cathodic vacuum arc technique with PH3 as the impurity source. By establishing the structure as a function of phosphorus content, it is found that phosphorus fraction in phosphorus incorporated ta-C (ta-C:P) films increases with varying levels of PH3 from 3 to 30 sccm, and that all samples retain their amorphous structures without remarkable changes, just exhibiting the clustering of sp2 sites and the evolution of structural ordering. Furthermore, the addition of phosphorus causes the compressive stress relaxation in terms of the rearrangement in atomic bonding structures. The increased number of localized electronic π and π⁎ states as hopping sites after phosphorus incorporation results in several orders of magnitude increase in the conductivity, and the films represent the hopping conduction in band tail states in the temperature range of 293–463 K. However, more H induced by excessive PH3 may saturate some defects and compensate the hopping sites, leading to a slight drop in the conductivity. The nature of ta-C:P films as n-type semiconductors is proved from the features of rectifying current–voltage cures.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,