Article ID Journal Published Year Pages File Type
702667 Diamond and Related Materials 2010 6 Pages PDF
Abstract

The physical and electrochemical properties of boron-doped polycrystalline diamond electrodes, prepared with various B/C ratio, i.e., 0.1%, 0.5% (BDD-A), 1% (BDD-B), and 5% (BDD-C), were investigated. Electrochemical measurements of the heavily boron-doped films (BDD-C) showed giant electric double-layer capacitance and activity which is significantly larger than BDD-A and BDD-B as well as glassy carbon electrodes. However, interestingly, actual boron concentration of BDD-C was observed to be almost the same as that of BDD-B by secondary ion mass spectroscopy (SIMS) and glow discharge optical emission spectroscopy (GDOES) analysis. It is suggested that the large capacitance is due to a few sp2-bonded carbon impurities, which was observed only in BDD-C, although the amount of the sp2-bonded nondiamond species are very small. In the present work, the reason for the interesting electrochemical properties of heavily boron-doped diamond electrodes is discussed. Furthermore, dimensional stability of the electrodes was also confirmed by conducting harsh anodic treatment.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,