Article ID Journal Published Year Pages File Type
702852 Diamond and Related Materials 2011 6 Pages PDF
Abstract

To improve the dispersibility of nanodiamond (ND) in solvents and polymer matrices, the grafting of copolymers containing vinyl ferrocene (Vf) onto the surface by a ligand-exchange reaction with ferrocene moieties of the copolymer and polycondensed aromatic rings of ND surface was investigated. The copolymer containing Vf was prepared by the radical copolymerization of Vf with vinyl monomers, such as methyl methacrylate (MMA), styrene (St), and N-isopropylacrylamide (NIPAM), using 2, 2′-azobisisobutyronitrile as an initiator. It was found that by heating of ND with poly(Vf-co-MMA), poly(Vf-co-St), and poly(Vf-co-NIPAN) in the presence of AlCl3 and Al powder as catalysts, the corresponding copolymer was successfully grafted onto the surface. On the contrary, in the absence of AlCl3, no grafting of these copolymers was observed. The grafting of polymers onto the ND surface was confirmed by FT-IR. These polymer-grafted NDs were found to give stable dispersions in solvents for the grafted polymer. In addition, the dispersibility of poly(Vf-co-NIPAM)-grafted ND uniformly dispersed in water below 32 °C but precipitated above the temperature. Therefore, it was concluded that the dispersibility of ND in water could be controlled by the temperature of water.

Research Highlights► Surface grafting of polymers onto nanodiamond by a ligand-exchange reaction. ► Ligand-exchange reaction of ferrocene moieties of polymers with nanodiamond surface. ► Polymer-grafted nanodiamonds gave stable dispersions in solvents for grafted chain. ► Dispersibility control of nanodiamond by the temperature of water.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,