Article ID Journal Published Year Pages File Type
703349 Diamond and Related Materials 2006 5 Pages PDF
Abstract

In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphology and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD (microwave plasma enhanced chemical vapour deposition) reactor containing a H2 or a H2 / O2 mixture. A comparison is made between (100)-oriented CVD diamond films hydrogenated with and without a small addition of oxygen (1%). X-ray Photoelectron Spectroscopy (XPS) and UV Photoelectron Spectroscopy (UPS) measurements point to the presence of O-atoms at the (sub)-surface of the diamond film. The measured conductivity is significantly different for the two processes of hydrogenation. Annealing experiments point out that the samples, which were terminated using the H2 / O2 mixture are still conductive enough after annealing at 410 °C to enable STM experiments. Here, we discuss the mechanism for STM imaging of H2 / O2 treated diamond films, associated with surface states induced by the oxygen incorporation.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,