Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
703595 | Diamond and Related Materials | 2008 | 6 Pages |
The nature of hydrogen and carbon bonding configuration formed onto 3C–SiC(100) surfaces by the diamond bias enhanced nucleation process consisting of stabilization and biasing stages were investigated by high resolution electron energy loss spectroscopy and high resolution X-ray photoelectron spectroscopy. During the stabilization stage a sp3-CHx bonded carbonaceous mono-layer is formed onto a hydrogenated 3C–SiC(100)–C–H terminated surfaces. After the biasing stage a hydrogenated nano-diamond film is formed. It was determined that hydrogen is strongly bonded to these nano-diamond surfaces and boundaries in sp3-C–H and sp2-C–H mono-hydride configuration. In addition, CHx (x > 1) weakly bonded surface or sub-surface species were detected. Regions which are not fully covered by the nano-diamond film expose the SiC surface covered with a very thin carbonaceous layer.