Article ID Journal Published Year Pages File Type
703595 Diamond and Related Materials 2008 6 Pages PDF
Abstract

The nature of hydrogen and carbon bonding configuration formed onto 3C–SiC(100) surfaces by the diamond bias enhanced nucleation process consisting of stabilization and biasing stages were investigated by high resolution electron energy loss spectroscopy and high resolution X-ray photoelectron spectroscopy. During the stabilization stage a sp3-CHx bonded carbonaceous mono-layer is formed onto a hydrogenated 3C–SiC(100)–C–H terminated surfaces. After the biasing stage a hydrogenated nano-diamond film is formed. It was determined that hydrogen is strongly bonded to these nano-diamond surfaces and boundaries in sp3-C–H and sp2-C–H mono-hydride configuration. In addition, CHx (x > 1) weakly bonded surface or sub-surface species were detected. Regions which are not fully covered by the nano-diamond film expose the SiC surface covered with a very thin carbonaceous layer.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,