Article ID Journal Published Year Pages File Type
7044637 Applied Thermal Engineering 2018 19 Pages PDF
Abstract
A numerical model of condensation heat transfer and frictional pressure drop in a circular tube was developed and validated. In order to facilitate the model validation, the physical model was built according to the experiment condition in the existing literature. In the numerical models proposed in this work, the following models were involved: volume of fluid (VOF) multiphase model, Lee's phase change model and Reynolds Stress turbulence model. The importance of boundary-layer mesh size was analyzed, and the effects of entrainment, turbulent Prandtl number and gas-liquid interface turbulence damping on the simulation results of heat transfer coefficient (HTC) and frictional pressure drop (FPD) were evaluated and modified. The numerical model was validated with Neeraas's experimental data and Steiner's correlation results at various mass fluxes, vapor qualities, pressures and fluids. The simulation results of void fraction showed good agreement with Steiner's correlation; the HTC and FPD showed good agreement with Neeraas's experimental data, which indicated the model developed in this work has good universality and accuracy.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,