Article ID Journal Published Year Pages File Type
7044829 Applied Thermal Engineering 2018 23 Pages PDF
Abstract
Monitoring data also indicated that, due to unexpected low DHW consumption of the particular system compared to design guidelines, only 8% of heat from condenser and absorber is recovered, while the rest of the heat is rejected to surroundings at the cooling tower. Using the simulation model, a set of scenarios with increased DHW consumption and improved heat exchanger parameters were investigated in order to overcome the issue of low heat recovery efficiency. Preliminary analysis for analyzed period showed possibility for recovery up to 53% of waste condenser and absorber heat, reduction of cooling energy price by 15% and reduction of total system running costs when heating and cooling are both considered. The developed simulation model has been proven as valuable tool for evaluation of energy balances and feasibility analysis as well as for system configuration analysis and performance enhancement and it will be used for further research in order to achieve optimal efficiency in year-round operation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,